Modulus-based iterative methods for constrained Tikhonov regularization

نویسندگان

  • Zhong-Zhi Bai
  • Alessandro Buccini
  • Ken Hayami
  • Lothar Reichel
  • Jun-Feng Yin
  • Ning Zheng
چکیده

Tikhonov regularization is one of the most popular methods for the solution of linear discrete ill-posed problems. In many applications the desired solution is known to lie in the nonnegative cone. It is then natural to require that the approximate solution determined by Tikhonov regularization also lies in this cone. The present paper describes two iterative methods, that employ modulus-based iterative methods, to compute approximate solutions in the nonnegative cone of large-scale Tikhonov regularization problems. The first method considered consists of two steps: first the given linear discrete ill-posed problem is reduced to a small problem by a Krylov subspace method, and then the reduced Tikhonov regularization problems so obtained is solved. The second method described explores the structure of certain image restoration problems. Computed examples illustrate the performances of these methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Tikhonov regularization based on generalized Krylov subspace methods

We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...

متن کامل

Greedy Tikhonov regularization for large linear ill-posed problems

Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...

متن کامل

A new framework for multi-parameter regularization

This paper proposes a new approach for choosing the regularization parameters in multiparameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov su...

متن کامل

A hybrid GMRES and TV-norm based method for image restoration

Total variation-penalized Tikhonov regularization is a popular method for the restoration of images that have been degraded by noise and blur. The method is particularly effective, when the desired noiseand blur-free image has edges between smooth surfaces. The method, however, is computationally expensive. We describe a hybrid regularization method that combines a few steps of the GMRES iterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 319  شماره 

صفحات  -

تاریخ انتشار 2017